If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-20x+96=64
We move all terms to the left:
2x^2-20x+96-(64)=0
We add all the numbers together, and all the variables
2x^2-20x+32=0
a = 2; b = -20; c = +32;
Δ = b2-4ac
Δ = -202-4·2·32
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-12}{2*2}=\frac{8}{4} =2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+12}{2*2}=\frac{32}{4} =8 $
| ⅔x=16 | | -(8+3x)+5=2x+6 | | 167+11x=200 | | x^2-x+13=-9x-2 | | 2r-7=8 | | 5x-9=7x+2 | | 4(2y−8)=60 | | 2x^2-20x+96=0 | | 6+6x=30-x | | 5y=37+8 | | 2y+8-2=30-6 | | 7x+5÷4=10 | | 1/x-1/x+1=1/182 | | 3x/27=82 | | X-6=2x- | | 2x^+2x-12=0 | | x+(3x+2)+(x+3x+2)=100 | | i+2i+3=39 | | 4n=1.33 | | 12+(2h-1)=32 | | 4(3g-8=1/4g+36)4 | | 3/(2y)+3/(4y)=9/4 | | 3(3y-y)+3(3y+y)=9/4 | | 3/(3y-y)+3(3y+y)=9/4 | | 84/u=4 | | 38/w=2 | | 36/v=3 | | 72y=18y^2 | | y-2(y-4)=12-5y | | 3(f+1/3f=60) | | e+(e-38)=142 | | d+(d/2+2)=26 |